Le passage de la sous-structure à la surstructure s'effectue par la mise en ordre des sites de cuivre comme le montre la Fig. 3.

Nous tenons à remercier M. A. Mazurier qui nous a apporté son aimable collaboration lors des mesures expérimentales et Mme R. Ollitrault-Fichet pour la preparation des cristaux.

Références

Becker, P. J. \& Coppens, P. (1975). Acta Cryst. A31, 417-425. Busing, W. R. (1971). Acta Cryst. A27, 683-684.

Carcaly, C., Chézeau, N., Rivet, J. \& Flahaut, J. (1973). Bull. Soc. Chim. Fr. pp. 1191-1195.
Collin, G. \& Laruelle, P. (1971). Bull. Soc. Fr. Minéral. Cristallogr. 94, 175-176.
Donnay, G., Donnay, J. D. H. \& Kullerud, G. (1958). Am. Mineral. 43, 228-242.
Frueh, A. J. (1955). Z. Kristallogr. 106, 299-307.
Jaulmes, S., Rivet, J. \& Laruelle, P. (1977). Acta Cryst. B33, 540-542.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. a System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univ. de York, Angleterre, et de Louvain, Belgique.
Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.

Acta Cryst. (1991). C47, 1803-1805

Structures of Trimethyloxosulfonium Salts. V. The catena-Tri- μ-chloro-cadmate and the catena-Tri- μ-bromo-cadmate

By René Puget, Michel Jannin, Christine de Brauer and René Perret
Laboratoire de Physique du Solide, associé au CNRS (URA 785), Université de Bourgogne, BP 138, 21004 Dijon CEDEX, France

(Received 15 July 1990; accepted 11 December 1990)

Abstract

CH}_{3}\right)_{3} \mathrm{SO}\right]\left[\mathrm{CdCl}_{3}\right], \quad M_{r}=311 \cdot 93\), orthorhombic, Pnma, $a=6.688$ (1), $b=10.147$ (2), $c=$ $13.446(2) \AA, \quad V=912.5(5) \AA^{3}, \quad Z=4, \quad D_{x}=2 \cdot 270$, $D_{m}=2.25(8) \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71073 \AA$, $\mu($ Mo $K \alpha)=3.424 \mathrm{~mm}^{-1}, F(000)=600, T=293 \mathrm{~K}$, final $R=0.015$, $w R=0.017$ for 1256 independent observed reflections. $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SO}\right]\left[\mathrm{CdBr}_{3}\right], M_{r}=445 \cdot 3$, orthorhombic, Pnma, $a=6.946$ (1), $b=10.543$ (2), $c=13.782(2) \AA, \quad V=1009.3(6) \AA^{3}, \quad Z=4$, $D_{x}=2.928, \quad D_{m}=2.90(8) \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=$ $0.71073 \AA, \mu($ Mo $K \alpha)=14.053 \mathrm{~mm}^{-1}, F(000)=816$, $T=293 \mathrm{~K}$, final $R=0.014, w R=0.016$ for 808 independent observed reflections. These two compounds are isotypic. Each Cd atom is coordinated by six halogen atoms, giving a quasi-regular octahedron; the octahedra, linked by sharing two opposite faces, form linear anionic chains parallel to the a axis. The pyramidal thiocations $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SO}^{+}$, located between the anionic chains, have only one symmetry plane. The H atoms were located.

Introduction. In previous papers, we have described the structures of trimethyloxosulfonium iodide, bromide, chloride, nitrate and chromate (Jannin, Puget, de Brauer \& Perret, 1991a,b,c; de Brauer, Jannin, Puget \& Perret, 1991). In this paper, we describe the structures of the isostructural catena-trichlorocadmate and catena-tribromocadmate salts.

Experimental. The crystals were obtained by slow evaporation of aqueous solutions in which $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SO} X$ and $\mathrm{Cd} X_{2}(X=\mathrm{Cl}$ or Br$)$ were dissolved in stoichiometric proportions.

The bromide: prismatic colorless crystals, density measured by pycnometry in xylene, $D_{m}=$ $2.90(8) \mathrm{Mg} \mathrm{m}^{-3}$, crystal size $0.18 \times 0.19 \times 0.20 \mathrm{~mm}$. Enraf-Nonius CAD-4 diffractometer. Unit-cell dimensions from least-squares refinement of 25 reflections with $5<\theta<13^{\circ}$. Systematic absences 0 kl $(k+l=2 n)$ and $h k 0(h=2 n)$. Space group $P n 2_{1} a$ (No. 33) or Pnma (No. 62). $\omega / 2 \theta$ scan, scan width $1 \cdot 2^{\circ} .1<\theta<30^{\circ} .-9<h<9,-12<k<12,0<l<$ 16. Four orientation reference reflections ($020, \overline{1} \overline{2} 2$, $1 \overline{2} \overline{2}, 2 \overline{3} 2$) every 200 scans showed no significant variation. Four intensity reference reflections $(0 \overline{5} 1$, $\overline{1} \overline{2} 2, \overline{1} \overline{3} 1,0 \overline{4} \overline{6}$) recorded every 2 h showed fading of $11 \cdot 5 \%$ during 232 h ; decay corrections. 8788 measured reflections, 4480 with $I>3 \sigma(I)$. Lorentz and polarization corrections. Absorption corrections from ψ scans: relative transmission factor between 0.830 and 0.999 .816 reflections after averaging: $R_{\text {int }}$ $=0.027$. Patterson function used for structure determination in Pnma. H atoms from difference Fourier synthesis. Anisotropic full-matrix least-squares refinement (on F) for non-H atoms, isotropic for H atoms. Extinction coefficient refined: $g=1.9730 \times$ 10^{-7} (Stout \& Jensen, 1968). Unit weights. 69 vari-
© 1991 International Union of Crystallography
ables. Final refinement with 808 reflections (three rejected as unobserved, five as bad) gave $R=0.014$, $w R=0.016$ and $S=1.226$. Maximum and minimum peak heights in final difference Fourier synthesis 0.389 and $-0.294 \mathrm{e}^{-3} . \Delta / \sigma_{\max }=0.01$.

The chloride: prismatic colorless crystals, density measured by pycnometry in xylene, $D_{m}=$ $2.25 \mathrm{Mg} \mathrm{m}^{-3}$, crystal size $0.21 \times 0.21 \times 0.24 \mathrm{~mm}$. Enraf-Nonius CAD-4 diffractometer. Unit-cell constants from least-squares refinement of 25 reflections with $5<\theta<15^{\circ}$. Same systematic absences. Space group Pn2 ${ }_{1} a$ (No. 33) or Pnma (No. 62). $\omega / 2 \theta$ scan, scan width $1 \cdot 2^{\circ} .1<\theta<28 .-9<h<9,-14<k<$ 14, $-5<l<18$. Four orientation reference reflections ($4 \overline{4} \overline{5}, \overline{2} \overline{3} 1,3 \overline{6} 5,1 \overline{3} \overline{3}$) every 200 scans showed no significative variations; the same intensity reference reflections recorded every 2 h showed fading of -1% during 126 h ; decay corrections. 7554 measured reflections, 6160 with $I>3 \sigma(I)$. Lorentz and polarization corrections. Absorption corrections from ψ scans: relative transmission factor between 0.919 and 0.999 . 1256 reflections after averaging: $R_{\text {int }}$ $=0.017$. Heavy-atom coordinates from assumed isostructural bromide used as initial model in Pnma. H atoms located by difference Fourier synthesis. Anisotropic least-squares full-matrix refinement (on F) for non-H atoms; isotropic for H atoms. Extinction coefficient refined $g=1.3224 \times 10^{-6}$ (Stout \& Jensen, 1968). Unit weights. 69 variables. Final refinement with 1256 reflections gave $R=0.015, w R$ $=0.017$ and $S=0.765$. Maximum and minimum peak heights in final Fourier synthesis 0.266 and $-0.728 \mathrm{e}^{\AA^{-3}} . \Delta / \sigma_{\max }=0.00$.
Scattering factors for neutral atoms and $f^{\prime}, f^{\prime \prime}$ were taken from International Tables for X-ray Crystallography (1974, Vol. IV). Enraf-Nonius (1977) $S D P$ used for all calculations. Computer used: VAX 730 .

Discussion. The final atomic coordinates are reported in Table 1 for the bromide and Table 3 for the chloride. The main interatomic distances and bond angles are listed in Table 2 for the bromide and Table 4 for the chloride.*

In these two compounds, each Cd atom is coordinated by six halogen atoms giving a quasi-regular octahedron. The octahedra are linked by two opposite shared faces to form complex anionic chains $\left(\operatorname{Cd} X_{3}\right)_{\infty}$ parallel to the a axis. This anionic columnar arrangement is found frequently in $A B X_{3}$ compounds, for instance in $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{NCdCl}_{3}$ (TMCC)

[^0]Table 1. Final atomic coordinates for $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SOCdBr}_{3}$ with e.s.d.'s in parentheses

$$
\boldsymbol{B}_{\mathrm{cq}}=\frac{4}{3} \sum_{i} \sum_{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j} \boldsymbol{\beta}_{i j} .
$$

	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
Cd	0.40615 (6)	0.250	$0 \cdot 25021$ (3)	$2 \cdot 305$ (6)
$\mathrm{Br}(1)$	$0 \cdot 15459$ (8)	$0 \cdot 250$	0.09638 (3)	2.48 (0)
$\mathrm{Br}(2)$	0.65589 (5)	0.42659 (3)	$0 \cdot 16503$ (3)	2.436 (6)
S	0.2233 (2)	0.250	0.64321 (9)	$2 \cdot 24$ (2)
O	$0 \cdot 1846$ (6)	0.250	0.7459 (3)	$3 \cdot 36$ (8)
C(1)	0.0124 (9)	0.250	0.5730 (4)	$2 \cdot 8$ (1)
C(2)	0.3525 (6)	$0 \cdot 3835$ (4)	0.6067 (3)	3.21 (8)

Table 2. Main interatomic distances (\AA) and bond angles $\left({ }^{\circ}\right)$ for $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SOCdBr}_{3}$

Pyramidal trimethyloxosulfonium			
$\mathrm{S}-\mathrm{O}$	$1.440(4)$	$\mathrm{O}-\mathrm{S}-\mathrm{C}(1)$	$112.7(3)$
$\mathrm{S}-\mathrm{C}(1)$	$1.755(6)$	$\mathrm{O}-\mathrm{S}-\mathrm{C}(2)$	$112.4(2)$
$\mathrm{S}-\mathrm{C}(2)$	$1.744(5)$	$\mathrm{C}(1)-\mathrm{S}-\mathrm{C}(2)$	$105.7(2)$
		$\mathrm{C}(2)-\mathrm{S}-\mathrm{C}(2)$	$107.8(3)$

CdBr_{6} octahedron

$\mathrm{Cd}-\mathrm{Br}(1)$	$2.729(1)$	$\mathrm{Br}(1)-\mathrm{Cd}-\mathrm{Br}(1)$	$179.7(1)$
$\mathrm{Cd}-\mathrm{Br}(1)$	$2.748(1)$	$\mathrm{Br}(1)-\mathrm{Cd}-\mathrm{Br}(2)$	$94.0(1)$
$\mathrm{Cd}-\mathrm{Br}(2)$	$(\times 4)$	$2.802(1)$	$\mathrm{Br}(1)-\mathrm{Cd}-\mathrm{Br}(2)$
		$96.8(2)$	
			$\mathrm{Br}(2)-\mathrm{Cd}-\mathrm{Br}(2)$
		$180.0(1)$	
		$\mathrm{Br}(2)-\mathrm{Cd}-\mathrm{Br}(2)$	$83.3(1)$

Table 3. Final atomic coordinates for $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SOCdCl}_{3}$ with e.s.d.'s in parentheses

$$
B_{\mathrm{cq}}=\frac{4}{3} \sum_{i} \sum_{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j} \boldsymbol{\beta}_{i j} .
$$

	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
Cd	0.39436 (5)	0.250	0.25083 (2)	1.835 (3)
$\mathrm{Cl}(1)$	$0 \cdot 1436$ (1)	0.250	$0 \cdot 10127$ (5)	$2 \cdot 12$ (1)
$\mathrm{Cl}(2)$	0.64429 (7)	0.42200 (5)	$0 \cdot 16873$ (4)	2.182 (7)
S	0.2183 (1)	0.250	0.63993 (5)	1.84 (1)
0	$0 \cdot 1805$ (3)	$0 \cdot 250$	0.7453 (2)	2.86 (4)
C(1)	-0.0020 (5)	0.250	$0 \cdot 5689$ (2)	2.64 (5)
C(2)	$0 \cdot 3522$ (4)	0.3884 (2)	$0 \cdot 6007$ (2)	$2 \cdot 70$ (4)

Table 4. Main interatomic distances (\AA) and bond angles $\left({ }^{\circ}\right)$ for $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SOCdCl}_{3}$

Pyramidal trimethyloxosulfonium

S—O	$1.439(2)$	$\mathrm{O}-\mathrm{S}-\mathrm{C}(1)$	$112.9(1)$
$\mathrm{S}-\mathrm{C}(1)$	$1.756(3)$	$\mathrm{O}-\mathrm{S}-\mathrm{C}(2)$	$112.8(1)$
$\mathrm{S}-\mathrm{C}(2)$	$1.747(2)$	$\mathrm{C}(1)-\mathrm{S}-\mathrm{C}(2)$	$105.5(1)$
		$\mathrm{C}(2)-\mathrm{S}-\mathrm{C}(2)$	$107.0(2)$
CdCl_{6} octahedron			
$\mathrm{Cd}-\mathrm{Cl}(1)$	$2.595(1)$	$\mathrm{Cl}(1)-\mathrm{Cd}-\mathrm{Cl}(1)$	$181.0(2)$
$\mathrm{Cd}-\mathrm{Cl}(1)$	$2.618(1)$	$\mathrm{Cl}(1)-\mathrm{Cd}-\mathrm{Cl}(2)$	$94.8(1)$
$\mathrm{Cd}-\mathrm{Cl}(2)$	$(\times 2)$	$2.648(1)$	$\mathrm{Cl}(1)-\mathrm{Cd}-\mathrm{Cl}(2)$
$\mathrm{Cd}-\mathrm{Cl}(2)$	$(\times 2)$	$2.657(1)$	$\mathrm{Cl}(2)-\mathrm{Cd}-\mathrm{Cl}(2)$
		$179.6(1)$	
		$\mathrm{Cl}(2)-\mathrm{Cd}-\mathrm{Cl}(2)$	$82.1(1)$

described by Morosin (1972). In each octahedron, two opposite X-atom angles $X-\mathrm{Cd}-X$ are very near to $180(1)^{\circ}$; the same angles with adjacent X atoms are between 82 and 86° or 98 and 94°, respectively, showing a weak distortion of the octahedra, as found

Fig. 1. Projection along the a axis of the atomic arrangement of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SOCdCl}_{3}$.
in TMCC. The $\mathrm{Cd}-X$ bond lengths range between 2.731 and $2.803 \AA$ (average $2.767 \AA$) for the bromide and 2.595 and $2.657 \AA$ (average $2.637 \AA$) for the chloride (N.B. for hexagonal TMCC $\mathrm{Cd}-\mathrm{Cl}=$ $2 \cdot 644 \AA$). These bond lengths are always lower than the ionic radii sums (Shannon \& Prewitt, 1969). Cd and $X(1)$ atoms are located in the mirror plane $(y=$ 0.25 or 0.75), as S, O and $\mathrm{C}(1)$ atoms of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SO}^{+}$. The pyramidal thiocation has only this symmetry element, as found in almost all the other salts studied but it closely approximates to $3 m$ symmetry. In the two title compounds, this cation has exactly the same geometrical features.

The projection along the a axis of the atomic arrangement of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SOCdCl}_{3}$ is shown in Fig. 1 and Fig. 2 shows the atom packing of the unit cell.

Fig. 2. Atom packing of the unit cell of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SOCdCl}_{3}$.

This work was carried out at the Centre de Diffractométrie de l'Université de Bourgogne.

References

Brauer, C. de, Jannin, M., Puget, R. \& Perret, R. (1991). Acta Cryst. C47. In the press.
Enraf-Nonius (1977). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
Jannin, M., Puget, R., de Brauer, C. \& Perret, R. (1991a). Acta Cryst. C47, 1687-1689.
Jannin, M., Puget, R., de Brauer, C. \& Perret, R. (1991b). Acta Cryst. C47. In the press.
Jannin, M., Puget, R., de Brauer, C. \& Perret, R. (1991c). Acta Cryst. C47. In the press.
Morosin, B. (1972). Acta Cryst. B28, 2303-2305.
Shannon, R. D. \& Prewitt, C. T. (1969). Acta Cryst. B25, 925-936.
Stout, G. H. \& Jensen, L. M. (1968). In X-ray Structure Determination. New York: Macmillan.

Structures of 1,1,1,1,1,2,2,2,2,2-Decaammine-3,3-diaqua-1,3;2,3-di-(μ-pyrazinato$\left.N, N^{\prime}\right)$-dicobalt(III)silver(I) Nitrate Tetrahydrate and 1,1,1,1,1-Pentaammine-2-(diethylenetriamine- $N, N^{\prime}, N^{\prime \prime}$)-1,2-(μ-pyrazinato- N, N^{\prime})-cobalt(III)copper(II) Perchlorate

By Xu Bing, Chen Dong and Tang Wenxia
Coordination Chemistry Institute, Nanjing University, Nanjing, People's Republic of China
and Yu Kaibei and Zhou Zhongyuang
Research Center of Analysis and Measurement, Acadamia Sinica, Chengdu, People's Republic of China

(Received 25 June 1990; accepted 15 January 1991)

$3922.6 \AA^{3}, Z=4, D_{x}=1.860 \mathrm{~g} \mathrm{~cm}^{-3}, \mu($ Mo $K \alpha, \lambda$ $=0.71070 \AA)=18.40 \mathrm{~cm}^{-1}, \quad F(000)=2248, \quad T=$ $298 \mathrm{~K}, R=0.038$ and $w R=0.038$ for 2272 significant reflections. The cation has point group symmetry © 1991 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters, H -atom parameters and interatomic contacts have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53818 (19 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester $\mathrm{CH} 1 \cdot 2 \mathrm{HU}$, England.

